Feuille d'exercices numéro 8 Séries entières

I Rayons de convergence

1. Calculer le rayon de convergence des séries suivantes

a)
$$\sum_{n=0}^{+\infty} \frac{n!}{2^n} x^n.$$

$$b) \sum_{n=0}^{+\infty} \frac{e^n}{\sqrt{n+1}} x^n.$$

c)
$$\sum_{n=1}^{+\infty} (\sum_{k=1}^{n} \frac{1}{k}) x^{n}$$
.

$$d) \sum_{n=2}^{+\infty} \frac{x^n}{\ln n}.$$

e)
$$\sum_{n=1}^{+\infty} \frac{n! \arctan n}{n^n} x^n.$$

f)
$$\sum_{n=1}^{+\infty} (1 + \frac{1}{n})^n x^{2n}$$
.

g)
$$\sum_{n=1}^{+\infty} \left(\sin(\frac{1}{n}) - \tan(\frac{1}{n})\right) x^n.$$

h)
$$\sum_{n=1}^{+\infty} \frac{1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n!}{n!} z^n$$
.

2. On note a_n le nombre de chiffres de l'entier n.

- 2
- a) Supposons que l'on connaisse $N=a_n$ $(N\geq 2)$, donner un encadrement de n en fonction de N. Indication : si N=2, alors, $10\leq n\leq 99$.
- b)En déduire un encadrement pour a_n en fonction de n.
- c) en déduire le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} a_n z^n$.
- d) en déduire le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} b_n z^n$, où b_n est la somme des chiffres de n.
- e) en déduire le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} c_n z^n$, où c_n est le produit des chiffres de n.
- 3. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$, une série entière de rayon de convergence R > 0.
 - a) Montrer que la série $g(z) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} z^n$ a un rayon de convergence infini.
 - b) Expliciter f, R et g lorsque $a_n = \frac{1}{n+1}$.
- 4. Soit (a_n) une suite de réels strictement positifs. On considère la série entière $\sum_{n=0}^{+\infty} a_n z^n$ de rayon de convergence R>0. Soit α un réel. On note ρ le rayon de convergence de la série $\sum_{n=0}^{+\infty} a_n^{\alpha} z^n$.
 - a) On suppose que $\alpha \geq 0$. Montrer que $\rho = R^{\alpha}$.
 - b) On suppose que $\alpha<0$. Montrer que $\rho\leq R^{\alpha}$. Donner un exemple où l'on a égalité, puis un autre exemple où cette

inégalité est stricte.

- 5. Soit (a_n) un suite de complexes non nuls tels que $\left|\frac{a_{2n+1}}{a_{2n}}\right|$ (resp. $\left|\frac{a_{2n+2}}{a_{2n+1}}\right|$) admet une limite l_1 (resp. l_2). Déterminer le rayon de convergence de $\sum_{n=0}^{+\infty} a_n z^n$.
- 6. Soit $(a_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $a_0>0$ et $a_{n+1}=\ln(1+a_n)$.
 - a) Etudier la convergence de cette suite.
 - b) Donner le rayon de convergence R de la série entière

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n.$$

- 7. Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Comparez les rayons de convergence de $\sum_{n=1}^{+\infty} a_n x^n$ et $\sum_{n=1}^{+\infty} a_n^2 x^n$.
- 8. Rayon de convergence de $\sum_{n=1}^{+\infty} a_n x^n$ avec

a)
$$a_n = \frac{\ln(n)\sqrt{n}}{n^2 + 1}$$
.
b) $b_n = e - \left(1 + \frac{1}{n}\right)^n$.

- 9. (CCP 2003) Soit la série $\sum_{n=0}^{+\infty}\arctan(n^a)x^n.$
 - a) Donner son rayon de convergence (on discutera selon la valeur de a).
 - b)Étudier le domaine réel de convergence de la série numérique.

10. (CCP 2003) Déterminer le rayon de convergence R de $\sum_{n\geq 1} a_n x^n$

$$avec a_n = \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}}$$

11. (Centrale 2004) Nature de la série de terme général

$$u_n = \cos\left(n^2\pi\ln\left(1-\frac{1}{n}\right)\right).$$

Pour quelles valeurs du réel x, $\sum_{n\geq 1} u_n x^n$ converge-t-elle?

- 12. (CCP 2005) Pour tout $n \in \mathbb{N}$ on pose $a_n = \int_0^1 \left(\frac{1+t^2}{2}\right)^n dt$.
 - a) Montrer que $\lim_{n \to +\infty} a_n = 0$.
 - b) Montrer que la série de terme général $(-1)^n a_n$ converge et calculer sa somme.
 - c) Trouver le rayon de convergence de la série de terme général $a_n z^n$ $(z \in \mathbb{C})$.
- 13. (CCP 2003) soit (a_n) une suite telle que a_{n+1}/a_n admette une limite finie en $+\infty$. Montrer que les rayons de convergence de $\sum_{n\in\mathbb{N}}a_nx^n$ et $\sum_{n\in\mathbb{N}}na_nx^n$ sont les mêmes, puis que

l'application $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est dérivable.

14. (CCP 2004) Rayon de convergence de la série $\sum_{n\in\mathbb{N}} \frac{n!}{n^n} x^n$.

II Calcul de sommes

15. On pose $a_0 = a_1 = 1$ et pour n > 0,

$$a_{n+1} = a_n + 2a_{n-1}/(n+1).$$

- a) Montrez que pour tout n > 0, $1 \le a_n \le n^2$.
- b) En déduire le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}}a_nx^n.$
- c) Calculez sa somme.
- 16. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de période 4.
 - a) Donner un exemple de suite de période 4.
 - b) Pour tout x réel, on note $S_n(x) = \sum_{k=0}^n a_k x^k$. Exprimer $S_{4p-1}(x)$ en fonction de $S_3(x)$ et de x.
 - c) Pour quelles valeurs de x, la suite $(S_n(x))_{n\in\mathbb{N}}$ a-t-elle un limite?
 - d)On note S(x) cette limite, exprimer S(x) en fonction de x et de a_0 , a_1 , a_2 et a_3 .
- 17. Soient $\alpha \neq \beta$ deux réels. Rayon de convergence et somme de la série entière $\sum_{n \in \mathbb{N}} a_n x^n$, où a_0 est donné, $a_n = \alpha a_{n-1}$ si n est pair, et $a_n = \beta a_{n-1}$ si n est impair.
- 18. Déterminer le rayon de convergence et la somme des séries entières :

a)
$$f(x) = \sum_{n=0}^{+\infty} (an^2 + bn + c)x^n$$
.

b)
$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)(n+3)}$$
.

c)
$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{1+n+n^2}{2^n} x^n$$
.

d)
$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{(n+1)(n-1)!} x^n$$
.

e)
$$f(x) = \sum_{n=1}^{+\infty} \cos(\frac{2\pi n}{3}) \frac{x^n}{n}$$
.

f)
$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^n}{3n+1}$$
.

g)
$$f(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}$$
.

h)
$$f(x) = \sum_{n=1}^{+\infty} \frac{x^{2n+2}}{n(n+1)(2n+1)}$$
.

i)
$$f(x) = \sum_{n=0}^{+\infty} n^{(-1)^n} x^n$$
.

j)
$$f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{1 + 2 + \dots + n}$$
.

$$k) f(x) = \sum_{n=1}^{+\infty} \frac{x^{4n}}{n}.$$

1)
$$f(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(2n)!}$$
.

19. Calculer
$$\sum_{n=0}^{+\infty} \frac{2n^3 + 1}{n!}.$$

20. Calculer
$$\sum_{n=1}^{+\infty} r^n \cos n$$
.

21. Calculer
$$S(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)^3}$$
. Montrer que

$$S(x) = \int_0^x \frac{\arctan t}{t} \ln \left(\frac{x}{t}\right) dt.$$

22. On considère la suite (u_n) définie par :

$$u_0 = 0$$
, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} + 3u_n$.

Déterminer le rayon de convergence et la somme de $\sum_{n=0}^{+\infty} u_n x^n$.

23. Même question avec (u_n) définie par :

$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$.

24. (TPE 2005) Rayon de convergence et somme de

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{2n+1}.$$

Indication : considérer $x \cdot f(x^2)$.

- 25. (CCP 2001) Rayon de convergence et valeur de $\sum_{n=1}^{+\infty} n^{(-1)^n} x^n$.
- 26. (Mines 2004) Soit $a_n = \int_0^{\pi/2} \cos^n(t) dt$. Donner le rayon de convergence de $\sum a_n x^n$ et la somme de la série.
- 27. (CCP 2004) citer tous les développements en série entière des fonctions usuelles. Calculer $\sum_{n=0}^{+\infty} nx^n$ et $\sum_{n=0}^{+\infty} n^2x^n$.
- 28. (CCP 2003) Donner le rayon de convergence de la série $\sum n^2 x^n$ et déterminer sa somme lorsqu'elle existe (indication : $n^2 = n(n-1) + n$).
- 29. (CCP 2004) Montrer que $ln(2) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$.

III Développements en série entière

30. Calculer, en précisant le rayon de convergence, un développement en série entière des fonctions suivantes.

a)
$$x \longmapsto \sqrt{1-x^2}$$
.

$$b)x \longmapsto (\frac{1+x}{1-x})^2.$$

c)
$$x \longmapsto \frac{\cos x}{e^x}$$
.

$$d)x \longmapsto \arccos \frac{1}{\sqrt{2-x}}.$$

e)
$$x \longmapsto \arctan(\frac{1-x^2}{1+x^2})$$
.

f)
$$x \longmapsto \frac{1 - abx^2}{1 - (a+b)x + abx^2}$$
.

g)
$$x \longmapsto \frac{1}{(1+x)(1-x^2)(1-x^4)}$$
.

h)
$$x \mapsto \frac{1}{1 + x + x^2 + \dots + x^n}$$
, n étant un entier ≥ 1 fixé.

i)
$$x \longmapsto \frac{x^3}{(x-1)^2(x+1)}$$
.

j)
$$x \longmapsto \frac{1 - x \cos \theta}{x^2 - 2 \cos(\theta)x + 1}$$
, $\theta \in \mathbb{R}$ donné.

$$k) x \longmapsto \frac{1 - x^2}{x^2 - 2x \cos \theta + 1}.$$

$$1) x \longmapsto \frac{1}{1 + x + x^2}.$$

$$m$$
) $x \mapsto \int_{-\infty}^{x} \frac{dt}{1 + t^2 + t^4}$.

$$(n)x \mapsto e^{-x^2} \int_0^x e^{t^2} dt.$$

o)
$$x \longmapsto \arctan(1+x)$$
.

31. Soit
$$f(x) = \sum_{n=0}^{+\infty} \frac{4^n (n!)^2}{(2n+1)!} x^{2n+1}$$
.

- a) Quel est son rayon de convergence?
- b) Montrez que f satisfait à l'équation différentielle

$$(1 - x^2)y' - xy = 1.$$

- c) En déduire une expression de f.
- 32. (TPE 2001) Développer en série entière au voisinage de 0 $f: x \longmapsto \int_0^x e^{-t^2} dt$
- 33. (CCP 2001, Mines 2005) Soit $S(x) = \sum_{n=1}^{+\infty} \left(1 + \frac{1}{n}\right)^{n^2} \cdot \frac{x^n}{n!}$.

Donner le rayon de convergence de S et un équivalent de S en $+\infty$. Indication : donner la limite quand $n \longrightarrow +\infty$ de

$$\left(1+\frac{1}{n}\right)^{n^2}-\frac{e^n}{\sqrt{n}}.$$

- 34. (TPE 2001, 2002) Effectuer le développement en série entière de $F(x) = \arctan\left(\frac{2-3x}{1+6x}\right)$.
- 35. (Centrale 2001) Foit $F(x) = \int_0^x \frac{\arctan(t)}{t} dt$ pour tout $x \in \mathbb{R}$.
 - a) Montrer que F est \mathcal{C}^1 sur \mathbb{R} et calculer F'.
 - b) Calculer G(x) = F(1/x) en fonction de F(x).
 - c) On pose f(x) = F(x)/x et f(0) = 1. Montrer que f est développable en série entière sur [-1,1] et \mathcal{C}^{∞} sur \mathbb{R} .
 - d) Calculer f(1) à 10^{-3} près.
- 36. (Centrale 2001) Montrer que $x \mapsto \int_0^{+\infty} \frac{\cos(tx)}{\cosh(t)} dt$ est développable en série entière au voisinage de 0.

- 37. (CCP 2001) Trouver une équation différentielle du premier ordre vérifiée par $y=f(x)=e^{x^2/2}\cdot\int_0^x e^{-t^2/2}\,\mathrm{d}t$. En déduire son développement en série entière.
- 38. (CCP 2002) soit $f(x) = \int_0^{+\infty} \frac{dt}{e^t + x \cdot \sin(t)}$.
 - a) Montrer que f est bien définie pour tout $x \in]-1,1[$.
 - b) Montrer que f peut s'écrire sous forme de série entière sur] -1,1[.
- 39. (CCP 2004) Soit $\sum a_n x^n$ la série entière de coefficients $a_n=\sum_{k=0}^n \frac{1}{k!}$ $(n\in\mathbb{N})$
 - a) Donner l'intervalle I de convergence de cette série entière.
 - b) Calculer la somme de cette série entière.
 - c) Trouver les coefficients du développement en série entière de la fonction f définie par $f(x) = \frac{e^x}{(1-x)^2}$.
- 40. Former le développement en série entière au voisinage de 0 de f définie par $f(x) = \int_x^1 \frac{1 \cos(t)}{t} dt$.
- 41. (CCP 2004) Montrer que $f(x) = \frac{\operatorname{ch}(2x) 1}{2x}$ est prolongeable par continuité en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} .