Feuille d'exercices numéro 8 Séries entières Indications et corrigé partiel

I Rayons de convergence

- 1. On trouve:
 - a) $R_a = 0$.
 - b) $R_b = 1/e$.
 - c) $R_c = 1$. Voir un produit de Cauchy, ou encadrer la somme finie.
 - $d)R_d = 1.$
 - e) $R_e = e$. Stirling!
 - f) $R_f = 1$.
 - g) $R_g = 1$.
 - h) $R_h = 1$. On voit $k \cdot k! = (k+1)! k!$.
- 2. a) On a clairement $10^{N-1} \le n < 10^N$. C'est à dire $10^{a_n-1} \le n < 10^{a_n}$.
 - b)Donc en passant au logarithme, $\frac{\ln(n)}{\ln(10)} < a_n \le 1 + \frac{\ln(n)}{\ln(10)}$.
 - c) $R_a = 1$.
 - d)On a, pour $n \geq 1$, l'encadrement $1 \leq b_n \leq 9a_n$ et donc $R_b = 1$.
 - e) On a la majoration $c_n \leq 9^{a_n} \leq n$ et donc $R_c \geq 1$. Mais (c_n) ne tend pas vers 0 et donc $R_c \leq 1$.
- 3. a) Soit r tel que 0 < r < R. Pour z quelconque :

$$0 \le \left| \frac{a_n}{n!} z^n \right| = |a_n r^n| \cdot \frac{(|z|/r)^n}{n!}$$

Comme 0 < r < R, $a_n r^n \longrightarrow 0$. Donc, en posant q = |z|/r:

$$0 \le \left| \frac{a_n}{n!} z^n \right| = o\left(\frac{q^n}{n!} \right)$$

Comme la série exponentielle $\sum q^n/n!$ converge pour tout $u \geq$, par comparaison par \leq de séries à termes positifs, $\sum \frac{a_n}{n!} z^n$ converge absolument pour tout z et donc $R = +\infty$.

b)On a, pour z réel :

$$f(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n+1} = -\frac{\ln(1+z)}{z} \quad (R=1)$$

$$g(z) = \sum_{n=0}^{+\infty} \frac{z^n}{(n+1)!}$$

$$= \frac{1}{x} (e^z - 1)$$

- 4. a) Le cas $\alpha = 0$ est simple, on obtient $\rho = 1 = R^0$. Supposons maintenant $\alpha > 0$ et r > 0. Le signe de α permet de dire $(a_n r^n)$ est bornée si et seulement si $(a_n^{\alpha}(r^n)^{\alpha})$ bornée, si et seulement si $(a_n^{\alpha}(r^{\alpha})^n)$ est bornée. En prenant successivement x = r pour 0 < r < R et r > R, on obtient bien $\rho \ge R^{\alpha}$ puis $\rho \le R^{\alpha}$.
 - b) Soit r < R. Comme $\alpha < 0$, on a $a_n r^n \longrightarrow 0$ bornée induit $(a_n^{\alpha}(r^{\alpha})^n)$ pas bornée, induit $r^{\alpha} \ge \rho$. On a donc l'implication : pour tout $r, r < R \Rightarrow r^{\alpha} \ge \rho$. Donc $R^{\alpha} \ge \rho$. Deux exemples correspondant à la question pour $\alpha = -1$ sont : $\sum 2^n x^n$ et $\sum a_n x^n$ où $a_n = 1$ pour n pair et $a_n = n!$ pour n impair.

- 5. On examine les séries $\sum a_{2n}x^{2n}$ et $\sum a_{2n+1}x^{2n+1}$. Elles ont même rayon de convergence $R' = \sqrt{l_1l_2}$, donc $R \geq R'$. Mais si |x| > R', $(a_{2n}x^{2n})$ n'est pas bornée (déf de R') et donc (a_nx^n) n'est pas non plus bornée. Comme la propriété précédente est vraie pour tout x tel que |x| > R', on a $R \leq R'$.
- 6. On voit que la suite (a_n) est décroissante positive (inégalités classiques de ln) et que la seule limite possible est 0 (on résout $x = \ln(1+x)$ via une étude de fonctions).
 - a) Comme $a_n \longrightarrow 0$, on a $a_{n+1} \sim a_n$. De ce fait R = 1.
- 7. Cf question ??: on a $R_b = R_a^2$.
- 8. a) $R_a = 1$
 - b) $R_b = 1$. Faire un développement limité de b_n .
- 9. a) Quoi qu'il arrive R = 1. Il est judicieux de séparer trois cas a = 0, a > 0 et a < 0.
 - b)En notant \mathcal{D} ce domaine, on a :

$$\mathcal{D} = \begin{cases}]-1,1[& \text{si } a \ge 0, \\ [-1,1[& \text{si } -1 \le a < 0, \\ [-1,1] & \text{si } a < -1. \end{cases}$$

- 10. On encadre brutalement $\frac{n}{\sqrt{2n}} \le a_n \le \frac{n}{\sqrt{n+1}}$ et on obtient R=1.
- 11. D'abord :

$$n^{2}\pi \ln\left(1 - \frac{1}{n}\right) = n\pi - \frac{\pi}{2} + \frac{\pi}{3n} + \frac{\pi}{4n^{2}} + o\left(\frac{1}{n^{2}}\right)$$

$$\cos\left(n^{2}\pi \ln\left(1 - \frac{1}{n}\right)\right) = (-1)^{n}\sin\left(\frac{\pi}{3n} + \frac{\pi}{4n^{2}} + o\left(\frac{1}{n^{2}}\right)\right)$$

$$= (-1)^{n}\frac{\pi}{3n} + O\left(\frac{1}{n^{2}}\right)$$

4

Donc u_n est la somme du terme général d'une série qui converge (on a utilisé le théorème spécial des séries alternées) et de celui d'une série absolument convergente. La série $\sum u_n$ converge donc.

Ensuite, on voit que $u_n \sim (-1)^n \frac{\pi}{3n}$, donc le rayon de convergence de $\sum u_n x^n$ est R = 1. De plus $\sum u_n$ converge et $u_n \cdot (-1)^n \frac{\pi}{3n}$ donc $\sum u_n (-1)^n$ diverge. Conclusion : $\sum u_n x^n$ converge ssi $u_n \in]-1,1]$.

- 12. a) On utilise le théorème de de la convergence dominée.
 - b)On a clairement (a_n) décroissante et on a vu $a_n \longrightarrow 0$. Le théorème spécial des séries alternées permet alors de conclure pour la convergence. Pour la somme on écrit :

$$\sum_{k=0}^{n} (-1)^k a_k = \int_0^1 \frac{1 + (-1)^{n+1} \left(\frac{1+t^2}{2}\right)^{n+1}}{1 + \frac{1+t^2}{2}} dt$$

$$= 2 \int_0^1 \frac{dt}{3+t^2} + (-1)^{n+1} \cdot 2 \cdot \int_0^1 \frac{\left(\frac{1+t^2}{2}\right)^{n+1}}{3+t^2} dt$$

$$= 2 \int_0^1 \frac{dt}{3+t^2} + (-1)^{n+1} \cdot 2 \cdot R_n$$

Une majoration montre que $0 \le R_n \le \frac{1}{3}a_{n+1}...$

- c) On encadre $\frac{1}{2^n} \le a_n \le 1$ et on déduit que R = 1.
- 13. C'est du cours!
- 14. R = e. Stirling!

II Calcul de sommes

- 15. a) Récurrence. Attention il faut faire une hypothèse sur a_n et a_{n-1} ...
 - b) Par comparaison R = 1.
 - c) Observons les différents éléments :

$$\sum_{n=1}^{+\infty} a_{n+1} x^n = \sum_{m=2}^{+\infty} a_m x^{m-1} \quad (m = n+1)$$

$$= \frac{1}{x} (f(x) - a_0 - a_1 x)$$

$$= \frac{1}{x} (f(x) - 1 - x)$$

$$\sum_{n=1}^{+\infty} \frac{a_{n-1}}{n+1} x^n = \frac{1}{x} \sum_{n=1}^{+\infty} \frac{a_{n-1}}{n+1} x^{n+1}$$

$$= \frac{1}{x} \int_0^x \sum_{n=1}^{+\infty} a_{n-1} t^n dt$$

$$= \frac{1}{x} \int_0^x \sum_{m=0}^{+\infty} a_m t^{m+1} dt$$

$$= \frac{1}{x} \int_0^x t f(t) dt$$

On a donc l'équation :

$$\frac{1}{x}(f(x) - 1 - x) = f(x) + \frac{2}{x} \int_0^x tf(t) dt$$

En multipliant par x puis en dérivant, on obtient :

$$f'(x) - 1 = f(x) + xf'(x) + f(x) + 2xf(x)$$

- 16. a) Par exemple (i^n) .
 - b)On a, en faisant des paquets de 4 termes :

$$S_{4p-1}(x) = \sum_{k=0}^{p-1} \sum_{\ell=4k}^{4k+3} a_{\ell} x^{\ell}$$

$$= \sum_{k=0}^{p-1} \sum_{m=0}^{3} a_{m} x^{4k+m}$$

$$= S_{3}(x) \sum_{k=0}^{p-1} x^{4k}$$

$$= S_{3}(x) \frac{1-x^{4p}}{1-x^{4}}$$

- c) La limite existe si et seulement si |x| < 1.
- d)On a donc $S(x) = \frac{S_3(x)}{1 x^4}$.
- 17. On a, par récurrence, pour tout $n \in \mathbb{N}$:

$$a_{2n} = (\alpha \beta)^n a_0,$$

$$a_{2n+1} = \beta \cdot (\alpha \beta)^n a_0$$

Un calcul similaire à la question ?? donne $R = \sqrt{\alpha \beta}$, puis, pour tout $x \in]-R, R[$:

$$\sum_{n=0}^{+\infty} a_{2n} x^{2n} = \frac{a_0}{1 - \alpha \beta x^2},$$

$$\sum_{n=0}^{+\infty} a_{2n+1} x^{2n+1} = \frac{a_0 \beta x}{1 - \alpha \beta x^2}$$

et donc

$$\sum_{n=0}^{+\infty} a_n x^n = \frac{1+\beta x}{1-\alpha \beta x^2} a_0.$$

- 18. a) R = 1. Pour la somme, écrire $an^2 + bn + c = a(n+1)(n+2) + d(n+1) + e$ et utiliser les dérivées de la série géométrique.
 - b) R = 1. Observer $\frac{\mathrm{d}}{\mathrm{d}x}(x^2 f(x)) = -x \ln(1-x)$.
 - c) R = 2. Remarquer que $n^2 + n + 1 = (n+1)(n+2) 2(n+1) + 1$ et utiliser les dérivées de la série géométrique. $f(x) = 2\frac{x^2 + 4}{(2+x)^3}$.
 - $dR = +\infty$. Voir que $f(x) = \frac{d}{dx} \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!}$.
 - e) $R = 1 : R \ge 1$ en majorant les coefficients par 1, puis $R \le 1$ parce que les coefficients ne tendent pas vers 0. Pour la somme dériver et utiliser $\cos(x) = \Re e(...)$
 - f) R = 1. Observer g'(y) où $g(y) = yf(y^3)$.
 - $g)R = +\infty.$
 - h)R = 1. Calculer f', f'' et voir...
 - i) Séparer les termes d'ordre pair et ceux d'ordre impair. R=1.
 - j) R = 1. Calculer explicitement $1 + 2 + \cdots + n$, puis calculer g'' ou g(x) = xf(x).
 - k)R = 1. Poser $y = x^4$.
 - l) $R = +\infty$. Pour x > 0 poser $y = \sqrt{x^3}$. Utiliser la parité de f.
- 19. Voir que $2n^3 + 1 = 2n(n-1)(n-2) + an(n-1) + bn + 1$ avec a et b à déterminer.
- 20. Voir que $cos(n) = \Re e(...)$ et sommer une série géométrique.
- 21. À revoir...
- 22. D'abord, on voit que $u_n = a(-1)^n + b(3)^n$. On a donc R =

1/3. Pour tout x tel que |x| < 1/3, on a :

$$\sum_{n=0}^{+\infty} u_{n+2} x^n = 2 \sum_{n=0}^{+\infty} u_{n+1} x^+ 3 \sum_{n=0}^{+\infty} u_n x^n$$
$$= \frac{2}{x} \sum_{n=1}^{+\infty} u_n x^n + 3 \sum_{n=0}^{+\infty} u_n x^n$$
$$= \frac{2}{x} (f(x) - u_0) + 3f(x)$$

Mais:

$$\sum_{n=0}^{+\infty} u_{n+2}x^n = \frac{1}{x^2}(f(x) - u_0 - u_1x)$$

- 23. Ici $u_n = a + b \cdot 2^n$, donc R = 1/2...
- 24. R=1. Pour x>0, on pose $y=\sqrt{x}$ et on observe $yf(y^2)$. Pour x<0, on pose $y=\sqrt{-x}=\sqrt{|x|}$. On a alors $x=-y^2$ et o regarde don $yf(-y^2)$...
- 25. Déjà dans la liste...
- 26. En majorant a_n , on a facilement $R \geq 1$.
- 27. Voir le suivant
- 28. L'indication dit tout...

29. Utiliser
$$\ln(2) = \int_0^2 \frac{\mathrm{d}t}{1+t}$$
 et utiliser la somme $\sum_{k=0}^n (-t)^k$ quand $t \in [0,1]...$

III Développements en série entière

30. a) On utilise celui de $\sqrt{1-u}$. R=1.

b)On a en fait
$$(1 - 2x + x^2) \cdot \frac{1}{(1-x)^2}$$
. $R = 1$.

- c) On veut $\Re e(\exp(-ix-x))$. $R=+\infty$.
- d)Peu commode... f'(x) = ? R = 1.
- e) f'(x) = ? R = 1.
- f) $1 (a+b)x + abx^2 = (1-ax)(1-bx)$.
- g) Produit de Cauchy... R = 1.
- h) Factoriser le dénominateur. R = 1.
- i) Même idée que les précédents. R = 1.
- j) $x^2 2\cos(\theta)x + 1 = (e^{i\theta} x)(e^{-i\theta} x)$. R = 1.
- k) Idem précédent.
- l) Idem h.
- m)f' = ? idem précédent...
- n)Produit deCauchy. $R = +\infty$.
- o) $f' = ? 1 + (x+1)^2 = (-1+i-x)(-1-i-x)$. $R = |1 \pm i| = \sqrt{2}$.
- 31. a) R = 1.
 - b)On dérive et on réindice!
 - c) On résout l'équation en se souvenant que f(0) = 0.
- 32. $f'(x) = ? R = +\infty$.
- 33. $R = +\infty$.
- 34. f'(x) =? R = 1/3. En fait, on voit que $f(x) = f(0) \arctan(3x)$...
- 35. a) Primitive!
 - b)G'(x) = ?
 - c) Primitive de DSE etc. R = 1.
 - d)On a une série alternée.
- $36.\,\mathrm{Interversion}$ série-intégrale. On utilise le DSE de \cos
- 37. y' xy = 1. On cherche la solution DSE tq y(0) = 0.
- 38. a) $e^t + x \sin(t) \ge e^t x > 0...$

- b) On fait un DSE de $\frac{1}{1+xe^{-t}\sin(t)}$ au voisinage de 0 pour x. Puis interversion série intégrale.
- 39. $a_n \longrightarrow e$ donc (a_n) est bornée d'où $R \ge 1$ et $\sum a_n$ diverge et donc $R \le 1$.
 - a) Reconnaître un produit de Cauchy.
 - b)Dériver ou multiplier par...
- 40. vérifier que f est définie sur \mathbb{R} . Ensuite f' = ? Voir que f' est DSE puis conclure. On ne connaît pas f(0).
- 41. DSE de ch...