Feuille d'exercices numéro 14 Fonctions et Arcs

- 1. Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ vérifiant f(0) = f'(0) = 0 et $f''(0) \neq 0$. On suppose qu'il existe un plus petit entier $q \geq 3$ tel que $f^{(q)}(0) \neq 0$. On note G_f le graphe de f et M le point de G_f d'abscisse x.
 - a) Écrire le développement limité de f à l'ordre q en 0.
 - b)Montrer l'existence d'un réel $\alpha > 0$ tel que, pour tout x de $]-\alpha,\alpha[\setminus\{0\}]$, la tangente en M à G_f coupe l'axe Ox en un point noté T.
 - c) On note I le milieu de OM. Montrer l'existence d'un réel $\beta \in]0, \alpha[$ tel que, pour tout x de $]-\beta, \beta[\setminus \{0\},$ la droite IT coupe l'axe Oy en un point P. Étudier, suivant la valeur de l'entier q, la limite du point P lorsque x tend vers 0.
- 2. Tracer l'allure du support de l'arc paramétré (\mathbb{R}, f) où $f: t \longmapsto (\frac{1-t^2}{1+t^2}, t\frac{1-t^2}{1+t^2}).$
- 3. Soit $f:[0,1] \longrightarrow \mathbb{R}^m$ une fonction dérivable telle que $f(0)=\vec{0}$. Calculer $\lim_{n \longrightarrow \infty} \sum_{k=1}^n f\left(\frac{k}{n^2}\right)$. On pourra penser à faire un développement limité à l'ordre 1 et utiliser la définition de limite.
- 4. Soit E un espace euclidien muni du produit scalaire $\langle \ | \ \rangle$. Soit f une application du segment [a,b] dans E, continue sur [a,b] et dérivable sur]a,b[. En considérant $\varphi:t\longmapsto \langle f(b)-f(a) \ | \ f(t) \rangle$, démontrer qu'il existe $c\in]a,b[$ tel que :

$$||f(b) - f(a)|| \le |b - a| ||f'(c)||$$

- 5. On ientifie \mathbb{R}^n et $\mathcal{M}_{n,1}(\mathbb{R})$. Soient n fonction dérivables C_1 , ..., C_n de \mathbb{R} dans \mathbb{R}^n . On pose M la fonction de \mathbb{R} dans $\mathcal{M}_n(\mathbb{R})$ définie par $M(t) = (C_1(t) \mid \cdots \mid C_n(t))$. On suppose $M(0) = I_n$. Montrer l'équivalence entre les assertions :
 - (i) $\forall t \in \mathbb{R}, \ M(t) \in \mathcal{O}(n)$
 - (ii) $\forall t \in \mathbb{R}, \ (M(t))^{\mathsf{T}} M'(t) \text{ est antisymétrique}$
- 6. Soit M une application dérivable de \mathbb{R} dans $\mathcal{M}_n(\mathbb{R})$ telle que $M(0) = I_n$ et pour tout $t \in \mathbb{R}$, $M(t)^2 = I_n$.
 - a) Montrer que pour tout $t \in \mathbb{R}$, M(t) est diagonalisable. Que dire de son spectre?
 - b)Si on note m(t) la multiplicité de la valeur propre 1 de M(t), déterminer tr(M(t)).
 - c) Montrer que pour tout réel t, M'(t) = -M(t)M'(t)M(t).
 - d)Montrer que l'application $t \mapsto \operatorname{tr}(M(t))$ est constante.
 - e) En déduire M(t).
- 7. a) Soit (I, γ) un arc paramétré du plan de classe \mathcal{C}^1 et régulier. Donner une équation cartésienne de la tangente au support de l'arc au point de paramètre $t_0 \in I$.
 - b)Ici $I = \mathbb{R}$ et $\gamma(t) = \left(\frac{t^2}{2p}, t\right)$. Le support de cet arc est une parabole. Déterminer les points de \mathbb{R}^2 par lesquels passent deux tangentes à la paraboles qui soient perpendiculaires.
- 8. On considère l'arc paramétré par $\gamma: t \longmapsto (\cos t, \sin t)$ et on note A=(1,0). On pose $I=[0,2\pi]$.
 - a) Donner pour $t \in \mathbb{R}$, les coordonnées du point M(t), projeté orthogonal de A sur la tangente à l'arc (I, γ) au point de paramètre t.
 - b)Étudier l'arc (I, M).
- 9. On se place dans \mathbb{R}^n muni du produit scalaire canonique. Soit (I, γ) un arc paramétré du plan de classe \mathcal{C}^1 ne passant pas par $\vec{0}$.

On pose pour tout $t \in I$, $S(t) = \frac{\gamma(t)}{\|\gamma(t)\|}$.

- a) Montrer que S est C^1 et que S'(t) est orthogonal à S(t) pour tout $t \in I$.
- b) Montrer que $(\gamma(t), \gamma'(t))$ libre équivaut à $S'(t) \neq 0$.
- c) En déduire tous les arcs paramétrés (I, γ) de classe \mathcal{C}^1 , ne passant pas par 0 et tels que pour tout $t \in \mathbb{R}$, $(\gamma(t), \gamma'(t))$ est liée.
- 10. On considère l'arc Γ paramétré par :

$$x(t) = \frac{t}{1+t^3}, \ y(t) = \frac{t^2}{1+t^3}$$

- a) Montrer qu'une droite du plan coupe le support en au plus trois points.
- b)Réciproquement, on se donne trois points $M(t_1)$, $M(t_2)$ et $M(t_3)$ de l'arc. Donner une condition nécessaire et suffisante sur t_1 , t_2 et t_3 pour que ces trois points soient alignés.
- c) La tangente en M(t) à l'arc le recoupe en M(t'). Exprimer t' en fonction de t.
- d)Soient $M(t_1)$, $M(t_2)$ et $M(t_3)$ trois points alignés de l'arc. Les tangentes en ces points à l'arc le recoupent en trois nouveaux points $M(t'_1)$, $M(t'_2)$ et $M(t'_3)$. Montrer que ces trois nouveaux points sont alignés.
- 11. a) Soient $E_1, \ldots E_p$, F des \mathbb{R} -espaces vectoriels de dimension finie. On considère p fonctions f_1, \ldots, f_p dérivables sur un intervalle I de \mathbb{R} et à valeurs respectivement dans $E_1, \ldots E_p$, et φ une application p-linéaire de $E_1 \times \cdots \times E_p$ vers F.

Montrer que $\varphi: t \longmapsto \varphi(f_1(t), \ldots, f_p(t))$ est dérivable sur I et calculer sa dérivée.

- b) Ici, on suppose $E_1 = \cdots = E_p = \mathbb{R}^p$. Justifier la dérivabilité et calculer la dérivée de $t \longmapsto \det(f_1(t), \ldots, f_p(t))$.
- c) On note:

$$D_n(x) = \begin{vmatrix} x & 1 & 0 & \cdots & 0 \\ \frac{x^2}{2} & x & 1 & \ddots & \vdots \\ \frac{x^3}{6} & \frac{x^2}{2} & x & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ \frac{x^n}{n!} & \frac{x^{n-1}}{(n-1)!} & \frac{x^{n-2}}{(n-2)!} & \cdots & \cdots & x \end{vmatrix}$$

Justifier que l'application D_n est \mathcal{C}^1 sur \mathbb{R} . Calculer D'_n . en déduire D_n .

12. Construire la courbe définie par :

$$x(t) = \sin(t) - \cos(t) - \ln|\tan(t/2)|, \ y(t) = \sin(t) + \cos(t).$$

13. Étude au voisinage de t=0 de la courbe définie par :

$$x(t) = e^t - \sin(t) - \cos(t), \ y(t) = \arctan(t) - t + t^3/3.$$

14. Soit (Γ) la courbe définie paramétriquement par :

$$x(t) = \frac{t}{t^2 - 1}, \ y(t) = \frac{t^2}{t + 1}.$$

- a) Étudiez les variations de x et y.
- b)Étudiez les branches infinies. Vous chercherez les asymptotes éventuelles et vous déterminerez la position de la courbe par rapport à ces droites le cas échéant.

- c) Déterminez le point double A de la courbe. Montrez que les tangentes en A sont orthogonales.
- d) Tracez (Γ) .
- 15. (CCP 2001) Étudier l'arc paramétré :

$$\begin{cases} x(t) = \frac{1}{t} + \frac{2}{t+1} + \frac{3}{t-1} \\ y(t) = \frac{2}{t} + \frac{3}{t+1} + \frac{1}{t-1} \end{cases}$$

16. (Saint-Cyr 2002) Étudier et tracer la courbe d'équation :

$$\begin{cases} x(t) = t^2 + \frac{2}{t} \\ y(t) = t^2 + \frac{1}{t^2} \end{cases}$$

On étudiera en particulier les points doubles.

- 17. Soit (C) la cardioïde d'équation : $r(\theta) = a(1 + \cos(\theta))$. Soient P et Q deux points de (C) alignés avec Q.
 - a) Tracez la courbe (C).
 - b)Si θ est le paramètre de P, quel est le paramètre de Q?
 - c) Déterminez l'angle entre l'axe Ox et la tangente en P.
 - d) Montrez que les tangentes en P et Q sont orthogonales.
 - e) Déterminez l'équation de la tangente à la courbe en P sous forme normale (i.e. une équation de la forme $x \cos(t) + y \sin(t) = p$). En déduire celle de la tangente à (C) en Q.
 - f) Déterminez l'intersection des tangentes en P et Q. Montrez que ce point d'intersection décrit un cercle dont vous donnerez le centre et le rayon.
 - g) Tracez le cercle sur le même graphique que (C).

6

18. (CCP 2001) Tracer la courbe définie par

$$\begin{cases} x(t) = 4\cos(t) + \cos(4t) \\ y(t) = 4\sin(t) - \sin(4t) \end{cases}$$

Calculer sa longueur.

19. (CCP 2003) Soit a>0. Montrer que les courbes \mathcal{C}_1 et \mathcal{C}_2 données par :

$$\frac{x^2}{4a^2} + \frac{y^2}{a^2} = 1,$$
$$\rho = a\sin(2\theta),$$

ont la même longueur.

- 20. (CCP 2004, 2005) L'espace affine est rapporté au repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$.
 - a) Montrer qu'il existe un unique arc paramétré $t \mapsto M(t)$ de classe \mathcal{C}^2 associé à la fonction vectorielle :

$$t \longmapsto \overrightarrow{OM}(t) = x(t)\overrightarrow{i} + y(t)\overrightarrow{j} + z(t)\overrightarrow{k}$$

vérifiant les conditions

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \vec{\imath} + \frac{\mathrm{d} \overrightarrow{OM}}{\mathrm{d}t} \wedge \vec{\jmath},\tag{i}$$

$$\overrightarrow{OM}(0) = \frac{d\overrightarrow{OM}}{dt}(0) = \overrightarrow{0}.$$
 (ii)

Soit γ cet arc.

- b) Représenter graphiquement γ . Donner une équation de la tangente à cet arc T. Pouvait-on prévoir ce résultat? Calculer la longueur de l'arc de courbe pour t variant de 0 à 2π .
- 21. Soit Γ l'arc de paramétrage $t \longmapsto (\cos^3 t, \sin^3 t)$.

- a) Construire Γ .
- b) Déterminer une équation de la tangente \mathcal{D}_t au point de M paramètre t.
- c) Déterminer l'intersection A de \mathcal{D}_t avec l'axe des abscisses. Déterminer la longueur AM.