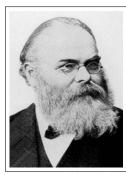
Fonctions de plusieurs variables

Hermann Amandus Schwarz 1843 – 1921



Né¹ le 25 janvier 1843 à Hermsdorf, en Silésie (aujourd'hui la ville de Jerzmanowa, en Pologne) et mort le 30 novembre 1921 à Berlin est un mathématicien allemand. Ses travaux sont marqués par une forte interaction entre l'analyse et la géométrie.

À l'origine, Schwarz a étudié la chimie, mais Kummer et Weierstraß l'ont persuadé de passer à l'étude des mathématiques. Il a travaillé à Halle (1867–69), Göttingen (1875–92) puis à Berlin (1892–1918), sur des sujets allant de la théorie des fonctions à la géométrie différentielle en passant par le calcul des variations.

Son ouvrage le plus important est la Festschrift² qu'il écrivit en 1885 à l'occasion du 70^e anniversaire de Weierstraß. Dans ce texte il cherchait a déterminer si une certaine surface minimale était effectivement d'aire minimale³. C'est au cours de cette étude qu'il présenta l'inégalité sur les intégrales qui porte maintenant son nom.

Table des matières

	Introduction 2	5 Fonctions de classe C^k
1	Notations 2	
2	On arrive dans \mathbb{R} ou \mathbb{R}^n ? 2	III Fonctions numériques de classe
3	Ce qu'on sait déjà faire 2	\mathcal{C}^1 8
	SCHARLES TYESE VEHICLES HIDE ALIEC	1 Gradient 8
II	Dérivées partielles, fonctions \mathcal{C}^1 3	2 Extrema d'une fonction de plusieurs variables 8
1	Dérivées partielles 3	sieurs variables 8
2	Fonctions C^1	IV Applications géométriques 9
3	Opérations algébriques sur les	1 Ensembles de niveau 9
	fonctions C^1 4	2 Courbes
4	Composée de fonctions \mathcal{C}^1 6	3 surfaces

Les savoir-faire

• Connaître les notions de base : dérivée partielle, différentielle, points critiques.

 $^{^1\}mathrm{Les}$ sources sont toujours les mêmes : wikipedia et MacTutor...

 $^{^2}$ Une Festschrift, aussi appelée liber amicorum, est un recueil d'articles écrits en l'honneur d'un professeur d'université et publié de son vivant. Le terme, emprunté de l'allemand, peut être traduit par « publication honorifique. »

³il s'agit d'une version beaucoup plus difficile de la question qu'on étudie quand on cherche à savoir si un point critique (la surface minimale) correspond effectivement à un extremum (l'aire minimale).

I Introduction 2

• Déterminer à l'aide de théorèmes généraux si une fonction est continue, \mathcal{C}^k ou \mathcal{C}^{∞} .

- Savoir calculer les dérivées, d'une composée.
- Savoir étudier les extrema d'une fonction à valeurs réelles.
- Savoir utiliser le théorème de Schwarz.
- Faire le lien entre fonction, gradient et courbe ou surface.

I Introduction

1 Notations

Dans tout le reste de ce polycopié on sera amené à considérer :

- $E = \mathbb{R}^p$ muni de la base canonique $C = (e_1, \dots, e_p)$.
- $F = \mathbb{R}^n$ muni de la base (pas forcément canonique) $\mathcal{B}_F = (\varepsilon_1, \dots, \varepsilon_n)$.
- $G = \mathbb{R}^q$.
- $\|\cdot\|$: une norme de E ou de F (le contexte permet de déterminer quelle norme on prend). Une quelconque : nous sommes en dimension finie et les notions de limite, continuité ne dépendent pas de la norme.
- U une partie de E (souvent, mais pas forcément, un ouvert).

2 On arrive dans \mathbb{R} ou \mathbb{R}^n ?

En pratique, pour le début, on peut très bien se contenter du cas $F = \mathbb{R}$. En effet : limite et continuité fonctionnent coordonnée par coordonnée. Si, pour tout x, $f(x) = \sum_{k=1}^{n} f_k(x)\varepsilon_k$ alors f est $machin^4$ si et seulement si tous les f_k sont machin... Le seul moment où il faudra supposer que F est autre chose que \mathbb{R} est pour la composée.

3 Ce qu'on sait déjà faire

C'est savoir si une fonction f d'une partie $\Omega \subset E$ vers F est continue.

⁴Machin : continu, dérivable etc.

⁵Généralement un ouvert ou un compact.

Dérivées partielles, fonctions \mathcal{C}^1 II

1 Dérivées partielles

Dans cette section f est une fonction définie sur U et à valeurs dans F.

Définition 1

Soit $j \in [1, p]$. La j^e dérivée partielle de f en a, si elle existe est définie par :

$$\partial_j f(a) = \lim_{h \to 0} \frac{f(a + he_j) - f(a)}{h}$$

Historiquement, on la note $\frac{\partial f}{\partial x_i}(a)$. On peut aussi l'écrire $D_j f(a)$.

Remarque On a donc:

$$\partial_1 f(a) = \lim_{h \to 0} \frac{f(a_1 + h, a_2, \dots) - f(a_1, a_2, \dots)}{h}$$

$$\partial_2 f(a) = \lim_{h \to 0} \frac{f(a_1, a_2 + h, \dots) - f(a_1, a_2, \dots)}{h}$$

$$\vdots$$

$$\partial_j f(a) = \lim_{h \to 0} \frac{f(a_1, \dots, a_j + h, \dots) - f(a_1, \dots, a_j, \dots)}{h}$$

Exemples 1

1.
$$r = \sqrt{x_1^2 + \cdots x_p^2}$$

2.
$$g(x, y, z) = f(xz/y)$$

3.
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, $f(0,0) = 0$.

4.
$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$
, $f(0,0) = 0$.

2 Fonctions C^1

Définition 2

f est \mathcal{C}^1 sur U si et seulement si elle admet des dérivées partielles en tout point de U et si ses dérivées partielles sont continues sur U.

On note $\mathcal{C}^1(U, F)$ l'ensemble des fonctions de classe \mathcal{C}^1 sur U et à valeurs dans F.

Exemples 2

1. Fonctions polynômiales. $U = \mathbb{R}^p$.

2. La fonction $r: x \longmapsto r(x) = ||x||$. $U = \mathbb{R}^p \setminus \{0\}$.

REMARQUE En général, on montrera qu'une fonction es C^1 en utilisant les théorèmes généraux décrits dans la section 3.

Propriété 1 (Développement limité de f en $a \in U$)

Soit f une fonction de classe \mathcal{C}^1 sur U et à valeurs dans F. Pour tout $a \in U$, il existe une fonction $\varepsilon : U \longrightarrow F$ de limite nulle en a et telle que pour tout $b = a + h \in U$,

$$f(a+h) = f(a) + \sum_{j=1}^{p} h_j \cdot \partial_j f(a) + ||h|| \varepsilon(a+h)$$
$$= f(a) + \sum_{j=1}^{p} h_j \cdot \partial_j f(a) + ||h|| \eta(h)$$

où η est une fonction de limite 0 quand $h \longrightarrow 0$.

Corollaire 2

L'application $h \mapsto \sum_{j=1}^{p} h_j \cdot \partial_j f(a)$ est linéaire de E dans F. C'est la différentielle de f en a et on la note $\mathrm{d}f(a)$ ou $\mathrm{d}f_a$. On écrira alors :

$$\mathrm{d}f(a) \cdot h = \sum_{j=1}^{p} h_j \cdot \partial_j f(a)$$

Exemples 3

Différentielles d'applications affines, linéaires.

3 Opérations algébriques sur les fonctions \mathcal{C}^1

À la louche : tout va bien! Pour être plus précis faisons un inventaire des cas classiques.

Propriété 3 (combinaison linéaire)

Soient f et g deux fonctions de clase \mathcal{C}^1 de U dans F. La combinaison linéaire $\alpha f + g$ est \mathcal{C}^1 sur U et :

$$\forall a \in U, \quad d(\alpha f + g)(a) = \alpha df(a) + dg(a).$$

Propriété 4 (applications multi-linéaires)

Soient

- (a) F_1, F_2, \ldots, F_q des espaces vectoriels de dimension finie
- (b) φ une application q-linéaire sur $\mathbf{F}_1 \times \mathbf{F}_2 \times \cdots \times \mathbf{F}_q$ à valeurs dans \mathbf{G}
- (c) pour tout $k \in [1, q]$, f_k une application \mathcal{C}^1 sur U à valeurs dans F_k

Alors la fonction g définie pour tout x de U par :

$$g(x) = \varphi(f_1(x), \dots, f_q(x))$$

est \mathcal{C}^1 sur U (et à valeurs dans G) et pour tout a de U, tout h de E :

$$dg(a) \cdot h = \sum_{k=1}^{q} \varphi(f_1(a), \dots, f_{k-1}(a), df_k(a) \cdot h, f_{k+1}(a), \dots, f_q(a))$$

$$= \varphi(df_1(a) \cdot h, f_2(a), \dots, f_q(h)$$

$$+ \varphi(f_1(a), df_2(a) \cdot h, f_3(a), \dots, f_q(a))$$

$$\dots$$

$$+ \varphi(f_1(a), \dots, f_{q-1}(a), df_q(a) \cdot h)$$

Corollaire 5 (cas particuliers importants)

Ce sont des cas où q=2 et $G=\mathbb{R}$: des formes bilinéaires. On utilise les notations du théorème 4.

1. Si $\mathcal{F}_1=\mathcal{F}_2=\mathbb{R}$ et $\varphi(x,y)=xy$ (le produit de réels) alors :

$$d(f_1f_2)(a) \cdot h = (df_1(a) \cdot h) \times f_2(a) + f_1(a) \times (df_2(a) \cdot h)$$

2. Si $F_1 = F_2 = F$, φ est le produit scalaire sur F noté $\langle \cdot \mid \cdot \rangle$ alors :

$$d \langle f_1 | f_2 \rangle(a) \cdot h = \langle df_1(a) \cdot h | f_2(a) \rangle + \langle f_1(a) | df_2(a) \cdot h \rangle.$$

En particulier, $||f||^2$ est \mathcal{C}^1 sur U et :

$$d(||f||^2)(a) \cdot h = 2 \langle f(a) | df(a) \cdot h \rangle$$

REMARQUES

- 1. Le programme est assez flou sur ce que l'on doit savoir autour des propriétés 4, 5 : une lecture stricte les mettrait hors programme.
- 2. Ceci dit, je pense que la propriété 5 doit être maîtrisée : il faut savoir dériver un produit!

Comme d'habitude, on a aussi la formule permettant de dériver 1/f quand f est à valeurs réelles.

Propriété 6

Soit f une fonction de classe \mathcal{C}^1 sur U, à valeurs réelles et ne s'annulant pas sur U. Alors 1/f est \mathcal{C}^1 sur U et :

$$d\left(\frac{1}{f}\right)(a) \cdot h = -\frac{df(a) \cdot h}{f(a)^2}$$

4 Composée de fonctions \mathcal{C}^1

Théorème 7 (Règle de la chaine)

Soient:

- (a) $t \in I \longrightarrow (x_1(t), \dots, x_p(t))$ une fonction \mathcal{C}^1 de l'intervalle I à valeurs dans $U \subset \mathbb{R}^p$;
- (b) f une fonction de classe C^1 sur U

Alors l'application $\varphi: t \in I \longmapsto f(x_1(t), \dots, x_p(t))$ est de classe \mathcal{C}^1 sur I et :

$$\varphi'(t) = \sum_{j=1}^{p} x_j'(t) \partial_j f(x_1(t), \dots, x_p(t)).$$

Théorème 8

Soient:

- (a) $f: x \mapsto f(x)$ une application de $U \subset E = \mathbb{R}^p$, à valeurs dans $V \subset F = \mathbb{R}^n$ et de classe \mathcal{C}^1 ;
- (b) $g: y \longmapsto g(y)$ une application de V, à valeurs dans $G = \mathbb{R}^q$ et de classe \mathcal{C}^1 ;

Alors l'application $h = g \circ f$, définie sur U est de classe C^1 et :

$$\forall (i,j) \in [1,q] \times [1,p], \quad \frac{\partial h_i}{\partial x_j} = \sum_{k=1}^n \frac{\partial g_i}{\partial y_k} (f(x)) \frac{\partial f_k}{\partial x_j} (x)$$

Remarque à nouveau du flou. Le programme cite explicitement le cas de g(u,v)=f(x(u,v),y(u,v)), et ne parle pas du reste.

Corollaire 9

Soient:

- (a) U un ouvert de \mathbb{R}^2 et x, y deux fonctions \mathcal{C}^1 sur U et telles que pour tout $A = (u, v) \in U$, B = (x(u, v), y(u, v)) soit dans l'ouvert V de \mathbb{R}^2 .
- (b) Une fonction f de classe C^1 sur V et à valeurs dans $G = \mathbb{R}^q$.

Alors l'application g définie sur U par g(u,v) = f(x(u,v),y(u,v)) est \mathcal{C}^1 et :

$$\frac{\partial g}{\partial u}(A) = \frac{\partial x}{\partial u}(A)\frac{\partial f}{\partial x}(B) + \frac{\partial y}{\partial u}(A)\frac{\partial f}{\partial y}(B)$$
$$\frac{\partial g}{\partial v}(A) = \frac{\partial x}{\partial v}(A)\frac{\partial f}{\partial x}(B) + \frac{\partial y}{\partial v}(A)\frac{\partial f}{\partial y}(B)$$

Où on aura posé A = (u, v) et B = (x(u, v), y(u, v)).

5 Fonctions de classe C^k

Supposons f de classe \mathcal{C}^1 sur U. Dans le cas où les dérivées partielles de f ont elles même des dérivées partielles, on les note : $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) = D_i(D_j f) = (D_i \circ D_j) f$. Si i = j, on écrira plutôt $\frac{\partial^2 f}{\partial x_i^2} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right)$

Remarque Attention! A priori les dérivées secondes $\frac{\partial^2 f}{\partial x_i \partial x_j}$ et $\frac{\partial^2 f}{\partial x_j \partial x_i}$ ne sont pas égales. Il faut plus d'informations.

Définition 3 (Classe C^2)

Une application f de U dans F est de classe C^2 si et seulement si les dérivées partielles de f existent sur U et sont de classe C^1 sur U.

Théorème 10 (Schwarz)

Si f est de classe C^2 sur U alors pour tout $(i, j) \in [1, p]^2$,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Définition 4 (Classes C^k , C^{∞})

- 1. Soit $k \in \mathbb{N}^*$. Une fonction $f: U \longrightarrow \mathbb{F}$ est de classe \mathcal{C}^k si et seulement si toutes ses dérivées partielles jusqu'à l'ordre k existent et sont continues sur U.
- 2. La fonction f est de classe \mathcal{C}^{∞} si et seulement si elle est de classe \mathcal{C}^k pour tout $k \in \mathbb{N}^*$.
- 3. Pour $k \in \mathbb{N}^* \cup \{\infty\}$, on note $\mathcal{C}^k(U, \mathbb{F})$ l'ensemble des fonctions de classe \mathcal{C}^k de U dans \mathbb{F} .

III Fonctions numériques de classe C^1

1 Gradient

Définition 5

Le gradient de f en a est l'unique vecteur $\overrightarrow{\operatorname{grad}}_a f = \nabla f(a)$ tel que pour tout $h \in E$:

$$df(a) \cdot h = \langle \nabla f(a), h \rangle$$

EXEMPLE 4 Changement de variables pour passer aux cordonnées polaires de \mathbb{R}^2 .

2 Extrema d'une fonction de plusieurs variables

Définition 6

Une application f définie sur une partie Ω de \mathbb{R}^p présente en $a \in \Omega$

- un maximum (global) si pour tout $x \in \Omega$, $f(x) \leq f(a)$.
- un minimum (global) si pour tout $x \in \Omega$, $f(x) \ge f(a)$.
- \bullet un extremum (global) si elle a un maimum ou un minimum en a.

Rappel : si Ω est compact alors f a un maximum et un minimum sur Ω .

Définition 7

Une application f définie sur une partie Ω de \mathbb{R}^p présente en $a \in \Omega$ présente un maximum local (respectivement un minimum local, extremum local) si et seulement si il existe r > 0 tel que la restriction de f à $\Omega \cap \mathcal{B}(a,r)$ présente un maximum (respectivement un minimum, extremum).

Définition 8

Soit f une application de classe \mathcal{C}^1 sur l'ouvert U. Le point $a \in U$ est un point critique de f si et seulement si $\mathrm{d}f(a) = 0$, c'est-à-dire si $\nabla f(a) = 0$.

Dans le cas contraire $(\nabla f(a) \neq 0)$ le point a est régulier.

Propriété 11

Soit f une application de classe \mathcal{C}^1 sur **l'ouvert** U. Si f a un extremum local en $a \in U$ alors a est un point critique de f.

Remarque Attention la réciproque est fausse. Voir les deux premiers exemples.

Exemples 5

- 1. (0,0) est un point critique de $(x,y) \mapsto x^2 y^2$. Est-ce un extremum?
- 2. On considère $f:(x,y)\longmapsto y(y-x^2)$. Pour tout (h,k), $t\longmapsto f(th,tk)$ a un minimum en 0. Est-ce que (0,0) est un minimum pour f?
- 3. $(x,y) \mapsto x^4 + y^4 x^2 + y^2 \text{ sur } \mathbb{R}^2$.
- 4. $(x,y) \mapsto x^2 + y^2 xy + x + y$, sur $\Omega = \{(x,y) \mid x+y \ge -3, x \le 0, y \le 0\}$
- 5. Triangles de périmètre maximum inscrits dans un cercle.

IV Applications géométriques

Dans ce paragraphe on a p = 2 (courbes) ou p = 3 (surfaces).

1 Ensembles de niveau

Définition 9

Soit f une fonction de classe \mathcal{C}^1 d'un ouvert $U \subset \mathbb{R}^p$ et à valeurs dans \mathbb{R} . Pour tout $\lambda \in R$, l'ensemble de niveau \mathcal{N}_{λ} est l'ensemble défini par :

$$\mathcal{N}_{\lambda} = \{ x \in U \mid f(x) = \lambda \}$$

Définition 10

Soit W un sous ensemble de \mathbb{R}^p . On dit que W est d'équation cartésienne $f(x_1, \ldots, x_p) = 0$ si et seulement si on a :

$$x \in W \iff f(x) = 0$$

En d'autres termes W est l'ensemble de niveau 0 pour f.

2 Courbes

Ici p=2 et on s'intéresse à la courbe \mathcal{C} d'équation cartésienne f(x,y)=0.

Propriété 12

Soit $M = (x_0, y_0)$ un point régulier de \mathcal{C} . Il existe deux réels $\alpha > 0$, $\beta > 0$, une fonction $t \in I \longmapsto (u(t), v(t)) \in \mathbb{R}^2$, de classe \mathcal{C}^1 , tels que pour tout $(x, y) \in]x_0 - \alpha, x_0 + \alpha[\times]y_0 - \beta, y_0 + \beta[$ on ait l'équivalence :

$$(x,y) \in \mathcal{C} \iff \exists t \in I, \ (x,y) = (u(t),v(t))$$

En d'autres termes :

En un point régulier d'une courbe, on peut localement trouver un paramétrage de classe \mathcal{C}^1 .

Propriété 13

Avec les notations de la définition 9. Si $a \in \mathcal{N}_{\lambda}$ est un point régulier alors $\nabla f(a)$ est :

- (1) orthogonal à \mathcal{N}_{λ} ;
- (2) orienté dans le sens des valeurs croissantes de λ .

3 surfaces

Ici p=3 et on s'intéresse à la surface Σ d'équation cartésienne f(x,y,z)=0.

Définition 11

Soit $M \in \Sigma$ un point régulier. Le plan tangent à Σ en M est le plan orthogonal à $\nabla f(M)$ et passant par M.

La courbe paramétrée par $t \mapsto (x(t), y(t), z(t))$ est tracée sur la surface Σ si et seulement si pour tout t, f(x(t), y(t), z(t)) = 0. On peut en déduire des informations sur le vecteur vitesse...